Slider

Корпускулярно-волновой дуализм

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: гипотеза де Бройля о волновых свойствах частиц, корпускулярно-волновой дуализм, дифракция электронов.

Корпускулярно-волновой дуализм (слово дуализм означает двойственность) — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

С первым проявлением этого принципа мы столкнулись в предыдущем листке, когда говорили о двойственной, корпускулярно-волновой природе света. В явлениях интерференции и дифракции свет демонстрирует свою волновую природу. В явлении фотоэффекта свет выступает как дискретный поток частиц — фотонов.

Является ли свет каким-то особым объектом нашего мира, таким, что подобный дуализм присущ только ему? Или, быть может, корпускулярно-волновой дуализм — это свойство вообще всех материальных объектов, просто впервые обнаружен он был для света?

Гипотеза де Бройля

Идея об универсальной двойственности корпускулярных и волновых свойств всех объектов природы была впервые высказана Луи де Бройлем (в 1924году) в качестве гипотезы о волновых свойствах частиц.

Итак, мы знаем, что свету с частотой \nu и длиной волны \lambda соответствуют частицы — фотоны, обладающие энергией E = h \nu и импульсом p = h/ \lambda. Де Бройль, в сущности, постулировал обратное.

Гипотеза де Бройля. Движению каждой частицы соответствует распространение некоторой волны. Частота и длина этой волны определяются энергией и импульсом частицы:

\nu =\frac{\displaystyle E}{\displaystyle h \vphantom{1^a}}, \ \lambda = \frac{\displaystyle h}{\displaystyle p\vphantom{1^a}}. (1)

Точно так же, любой волне с частотой \nu и длиной волны \lambda отвечают частицы с энергией E = h \nu и импульсом p = h/ \lambda.

Чтобы лучше осмыслить гипотезу де Бройля, давайте обсудим дуализм «волна–частица» на примере электромагнитного излучения.

В случае электромагнитных волн мы имеем следующую закономерность. По мере увеличения длины волны всё легче наблюдать волновые свойства излучения и всё труднее — корпускулярные. И наоборот, чем меньше длина волны, тем ярче выражены корпускулярные свойства излучения и тем труднее наблюдать его волновые свойства. Изменение соотношения корпускулярных и волновых свойств хорошо прослеживается при движении по известной вам шкале электромагнитных волн.

Радиоволны.Длины волн здесь настолько велики, что корпускулярные свойства излучения практически не проявляются. Волновые свойства в этом диапазоне абсолютно доминируют.

Длины волн могут составлять несколько метров или даже километров, так что волновая природа проявляется «сама собой» — радиоволны в процессе дифракции запросто огибают дома или горы. Излучение радиоволн и их взаимодействие с материальными объектами отлично описывается в рамках классической электродинамики.

Видимый свет и ультрафиолет. Это своего рода «переходная область»: в оптике мы можем наблюдать как волновые свойства света, так и корпускулярные.

Однако в обоих случаях надо постараться. Так, длины волн видимого света много меньше размеров окружающих нас тел, поэтому в опытах по интерференции или дифракции света нужно создавать специальные условия (малость щелей или отверстий, удалённость экрана). В свою очередь, термин «красная граница фотоэффекта» также подчёркивает пограничность данного диапазона: фотоэффект начинается лишь при переходе через красную границу.

Рентгеновское и гамма-излучение. Длины волн очень малы, и наблюдать волновые свойства излучения весьма затруднительно. Так, верхняя граница длин волн рентгеновского излучения составляет 10 нм; это лишь на два порядка превышает размер атома. Ясно, что дифракцию на «обычных» препятствиях при такой длине волны наблюдать невозможно.

Однако в рентгеновский диапазон входят длины волн порядка размера атома и межатомных расстояний в кристалле (0,1 нм). Поэтому дифракция рентгеновских лучей наблюдается на «естественных» дифракционных решётках — кристаллических решётках твёрдых тел (эта идея была высказана немецким физиком Лауэ в 1912 году).

Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц.

Рассуждая по аналогии с электромагнитными волнами, можно заключить, что и частица будет проявлять волновые свойства тем лучше, чем больше её длина волны де Бройля (в масштабах данной ситуации).

Так, мы совсем не наблюдаем волновых свойств у окружающих нас тел. (Видели вы, например, интерференцию движущихся автомобилей?) А почему? Давайте посчитаем длину дебройлевской волны объекта массой 1 кг, движущегося со скоростью 1 м/с:

\lambda = \frac{\displaystyle 6,63 \cdot 10^{-34}}{\displaystyle 1 \cdot 1 \vphantom{1^a}} = 6,63 \cdot 10^{-34} м.

Это на 25 порядков меньше размера атома. Воображение отказывается представить себе столь малую величину. Разумеется, никакого волнового поведения у нашего объекта при таких условиях не обнаруживается — он стопроцентно ведёт себя как «частица», то есть как материальная точка классической механики.

Дифракция электронов

Совсем другое дело — электрон. Масса электрона равна 9,1 \cdot 10^{-31} кг, и столь малое значение массы (а стало быть, и импульса в формуле \lambda = h/p) может дать длину волны де Бройля, достаточную для экспериментального обнаружения волновых свойств.

И вот оказывается, что электроны с энергией 100 \ эВ (при такой энергии становится несущественным хаотическое тепловое движение электронов, и электронный пучок можно считать когерентным) имеют дебройлевскую длину волны примерно 0,1 \ нм — это как раз порядка размера атома и расстояний между атомами в кристаллической решётке! Опыт по наблюдению дифракции рентгеновских лучей на кристаллических структурах уже имелся, поэтому оставалось направить на кристаллическую решётку пучок электронов.

Впервые это было сделано в знаменитом эксперименте американских физиков Дэвиссона и Джермера (1927 год). Дифракция электронов на кристаллах была обнаружена! Как и ожидалось, полученная дифракционная картина имела тот же характер, что и при дифракции на кристаллической решётке рентгеновских лучей.

Впоследствии волновые свойства были обнаружены и у более крупных частиц: протонов, нейтронов, атомов и молекул. Гипотеза де Бройля, таким образом, получила надёжное опытное подтверждение.

Соотношение неопределённостей

Обнаружение корпускулярных свойств электромагнитных волн и волновых свойств частиц показало, что объекты микромира подчиняются необычным законам. Эти законы совершенно непривычны для нас, привыкших наблюдать за макроскопическими телами.

Наше сознание выработало некоторые образы частицы и волны, вполне пригодные для описания объектов классической физики. Частица — это маленький, локализованный в пространстве сгусток вещества. Волна — это распределённый (не локализованный) в пространстве колебательный процесс. Как же эти понятия могут совмещаться в одном объекте (например, в электроне)?

Вообразить такое действительно получается с трудом. Но что поделать — это факт. Природа оказывается намного богаче нашего воображения. В своей повседневной жизни мы находимся очень далеко от микромира, и в привычном нам диапазоне макроскопических тел природа демонстрирует свои «крайние» проявления — в виде «только частиц» или «только волн». Вот почему корпускулярные и волновые свойства представляются нам несовместимыми друг с другом. Но на самом деле это не так: в микромире оказывается, что один и тот же объект (например, электрон) легко может обладать обоими свойствами одновременно — словно человек, обладающий разными, несовместимыми на первый взгляд чертами характера.

Так, будучи частицей, электрон локализован в пространстве; но, будучи волной, локализован не в точке, а «размазан» по некоторой области. Координаты и скорость электрона не могут быть измерены одновременно сколь угодно точно. Неопределённость координаты \Delta x и неопределённость соответствующей проекции импульса \Delta p_x оказываются связанными соотношением неопределённостей Гейзенберга:

\Delta x \cdot \Delta p_x \geqslant h^{\mkern -14mu -}. (2)

Соотношение неопределённостей (2) имеет фундаментальный характер — оно применимо к любым объектам природы. Чем точнее мы знаем координаты объекта (то есть чем в меньшей пространственной области он локализован), тем больше получается разброс значений его импульса(то есть тем с большей скоростью объект «готов вылететь» из этой области). И наоборот, чем точнее мы знаем импульс объекта, тем меньше у нас информации о том, где этот объект находится.

Но коль скоро нет возможности одновременно точно измерить координаты и скорость, то теряет смысл понятие траектории движения объекта. Механика Ньютона перестаёт работать в микромире и уступает место квантовой механике.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.