Slider

Магнитное поле. Силы

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: сила Ампера, сила Лоренца.

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда.

Сила Лоренца

Сила, с которой магнитное поле действует на заряженную частицу, называется силой Лоренца. Опыт показывает, что вектор \vec{F} силы Лоренца находится следующим образом.

1. Абсолютная величина силы Лоренца равна:

F = qvB \sin \alpha. (1)

Здесь q — абсолютная величина заряда, v — скорость заряда, B — индукция магнитного поля, \alpha — угол между векторами \vec{v} и \vec{B}.

2. Сила Лоренца перпендикулярна обоим векторам \vec{v} и \vec{B}. Иными словами, вектор \vec{F} перпендикулярен плоскости, в которой лежат векторы скорости заряда и индукции магнитного поля.

Остаётся выяснить, в какое полупространство относительно данной плоскости направлена сила Лоренца.

3. Взаимное расположение векторов \vec{v}, \vec{B} и \vec{F} для положительного заряда q показано на рис. 1.

Рис. 1. Сила Лоренца

Направление силы Лоренца определяется в данном случае по одному из двух альтернативных правил.

Правило часовой стрелки. Сила Лоренца направлена туда, глядя откуда кратчайший поворот вектора скорости частицы v к вектору магнитной индукции B виден против часовой стрелки.

Правило левой руки . Располагаем левую руку так, чтобы четыре пальца указывали направление скорости частицы, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Лоренца.
Для отрицательного заряда q направление силы Лоренца меняется на противоположное.

Всё вышеперечисленное является обобщением опытных фактов. Формула (1) позволяет связать размерность индукции магнитного поля с размерностями других физических величин:

B=\frac{\displaystyle F}{\displaystyle qv \sin \alpha \vphantom{1^a}}

Сила Ампера

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Происхождение силы Ампера легко понять. Ведь ток в металле является направленным движением электронов, а на каждый электрон действует сила Лоренца. Все эти силы Лоренца, действующие на свободные электроны, имеют одинаковое направление и одинаковую величину; они складываются друг с другом и дают результирующую силу Ампера.

Направление силы Ампера определяется по тем же двум правилам, сформулированным выше.

Правило часовой стрелки . Сила Ампера направлена туда, глядя откуда кратчайший поворот тока к полю виден против часовой стрелки .

Правило левой руки . Располагаем левую руку так, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Ампера .

Взаимное расположение тока, поля и силы Ампера \vec{F} указано на рис. 2.

Рис. 2. Сила Ампера

На этом рисунке проводник имеет длину l, а угол между направлениями тока и поля равен \alpha . Мы сейчас выведем выражение для абсолютной величины силы Ампера.

На каждый свободный электрон действует сила Лоренца:

F_1 = evB \sin \alpha

где v — скорость направленного движения свободных электронов в проводнике.

Пусть N — число свободных электронов в данном проводнике, n — их концентрация (число в единице объёма). Тогда:

N = nV = nSl,

где V — объём проводника, S — площадь его поперечного сечения. Получаем:

F = NF_1 = nSl \cdot evB \sin \alpha  = (enSv)Bl \sin \alpha.

Мы не случайно выделили скобками четыре сомножителя. Ведь это есть не что иное, как сила тока: I = enSv (вспомните выражение силы тока через скорость направленного движения свободных зарядов!). В результате приходим к окончательной формуле для силы Ампера:

F = IBl \sin \alpha. (2)

Хорошую возможность поупражняться в нахождении направлений магнитного поля и силы Ампера даёт взаимодействие параллельных токов. Оказывается, два параллельных провода отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают (рис. 3).

Рис. 3. Взаимодействие параллельных токов

Обязательно убедитесь в этом самостоятельно! Делаем так. Сначала берём произвольную точку на первом проводе и определяем направление магнитного поля, создаваемого в этой точке вторым проводом (правило вам известно — см. предыдущий листок>). Ну а затем находим направление силы Ампера, действующей на первый провод со стороны магнитного поля второго провода.

Рамка с током в магнитном поле

В листках по термодинамике мы говорили о важности циклически работающих машин: они снабжают нас энергией. Понимание законов термодинамики позволило сконструировать тепловые двигатели, которые исправно служат нам и по сей день.

Понимание же законов электромагнетизма дало возможность создать циклическую машину другого типа — электродвигатель.

Мы рассмотрим один из элементов электродвигателя — рамку с током в магнитном поле. Разобравшись в её поведении, мы сможем уловить основную идею функционирования электродвигателя.

Пусть прямоугольная рамка 1234 может вращаться вокруг горизонтальной оси (рис. 4, слева). Рамка находится в вертикальном однородном магнитном поле \vec{B}. Ток течёт по рамке в направлении 1 > 2 > 3 > 4 > 1; это направление показано соответствующими стрелками.

Рис. 4. Рамка с током в магнитном поле

Вектор \vec{n} называется вектором нормали; он перпендикулярен плоскости рамки и направлен туда, глядя откуда ток кажется циркулирующим против часовой стрелки. (Иными словами, вектор \vec{n} сонаправлен с вектором индукции магнитного поля, которое создаётся током в рамке.) Поворот рамки измеряется углом \alpha между векторами \vec{n} и \vec{B}.

Теперь определим направления сил Ампера, которые действуют на рамку со стороны магнитного поля. Эти силы расставлены на рисунке; вот вам ещё одно упражнение на правило часовой стрелки (левой руки) — обязательно проверьте правильность указанных направлений!

Силы \vec{F_{12}} и \vec{F_{34}}, приложенные к сторонам 12 и 34, действуют вдоль оси вращения. Они лишь растягивают рамку и не вызывают её вращение.

Куда более интересны силы \vec{F_{23}} и \vec{F_{14}}, приложеные соответственно к сторонам 23 и 14. Они лежат в горизонтальной плоскости и перпендикулярны оси вращения. Эти силы вращают рамку в направлении по часовой стрелке, если смотреть справа (рис. 4, правая часть). Вычислим момент этой пары сил относительно оси O вращения рамки.

Пусть длина стороны 14 равна a. Тогда

F_{14} = F_{23} = IB_a.

Пусть длина стороны 12 равна b. Плечо d силы F_{14}, как видно из рис. 4 (справа) равно:

d=OA=\frac{\displaystyle b}{\displaystyle 2 \vphantom{1^a}} \sin \varphi

Таким же будет плечо силы \vec{F_{23}}. Отсюда получаем момент сил, вращающий рамку:

M=F_{14}d + F_{23}d=IB_a \cdot \frac{\displaystyle b}{\displaystyle 2 \vphantom{1^a}} \sin \varphi + IB_a \cdot \frac{\displaystyle b}{\displaystyle 2 \vphantom{1^a}} \sin \varphi=IBab  \sin \varphi

Теперь заметим, что ab=S — площадь рамки. Окончательно имеем:

M = IBS \sin \varphi. (3)

В этой формуле площадь служит единственной геометрической характеристикой рамки.Это наводит на мысль, что только площадь рамки и существенна в выражении для вращающего момента. И действительно, можно доказать (разбивая рамку на бесконечно узкие полоски, неотличимые от прямоугольников), что формула (3) справедлива для рамки любой формы с площадью S.

Как видно из формулы (3), максимальный вращающий момент равен:

M_{max} = IBS.

Эта максимальная величина момента достигается при \varphi = \frac{\displaystyle \pi}{\displaystyle 2 \vphantom{1^a}}, то есть когда плоскость рамки параллельна магнитному полю.

Вращающий момент становится равным нулю при \varphi = 0 и \varphi = \pi. Оба этих положения по-своему интересны.

При \varphi = \pi плоскость рамки перпендикулярна полю, а векторы n и B направлены в разные стороны. Данное положение является положением неустойчивого равновенсия: стоит хоть немного шевельнуть рамку, как силы Ампера начнут её вращать в том же направлении, поворачивая вектор \vec{n} к вектору \vec{B} (убедитесь!).

При \varphi = 0 плоскость рамки также перпендикулярна полю, а векторы \vec{n} и \vec{B} сонаправлены. Это — положение устойчивого равновенсия: при отклонении рамки возникает вращающий момент, стремящийся вернуть рамку назад (убедитесь!). Начнутся колебания рамки, постепенно затухающие из-за трения. В конце концов рамка остановится в положении \varphi = 0; в этом положении вектор индукции магнитного поля рамки сонаправлен с вектором \vec{B} индукции внешнего магнитного поля (вот почему при намагничивании вещества элементарные токи ориентируются так, что их поля направлены в сторону внешнего магнитного поля). Полезное сопоставление: рамка занимает такое положение, что её положительная нормаль ориентируется в том же направлении, что и северный конец стрелки компаса, помещённой в это магнитное поле.

Таким образом, поведение рамки в магнитном поле становится ясным: если отклонить рамку от положения устойчивого равновесия и отпустить, то рамка будет совершать колебания. С точки зрения совершения механической работы это не очень хорошо: если намотать нить на ось вращения и подвесить к нити груз, то груз будет то подниматься, то опускаться.
Но вот если исхитриться и заставить ток менять направление в нужные моменты, то вместо колебаний рамки начнётся её непрерывное вращение и, соответственно, непрерывный подъём подвешенного груза. Тогда-то и получится полноценный электродвигатель; идея с переменой направления тока реализуется с помощью коллектора и щёток.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ПРОБНЫЕ ЕГЭ В ФЕВРАЛЕ

Типы подготовки:
Сказать спасибо
РЕКОМЕНДУЕМ:
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.