Механические волны.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: механические волны, длина волны, звук.
Механические волны - это процесс распространения в пространстве колебаний частиц упругой среды (твёрдой, жидкой или газообразной).
Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.
Продольные и поперечные волны.
Волна называется продольной, если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис. 1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е. перпендикулярно слоям).
|
Рис. 1. Продольная волна |
Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.
|
Рис. 2. Поперечная волна |
Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.
Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.
Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества.
Наиболее просты для изучения гармонические волны. Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.
Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица \(1\)) начала совершать колебания с периодом \(T\). Действуя на соседнюю частицу \(2\) она потянет её за собой. Частица \(2\) в свою очередь, потянет за собой частицу \(3\) и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом \(T\).
Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица \(2\) в своём движении будет несколько отставать от частицы \(1\), частица \(3\) будет отставать от частицы \(2\) и т. д. Когда частица \(1\) пустя время \(T\) завершит первое колебание и начнёт второе, своё первое колебание начнёт частица \(N+1\), находящаяся от частицы \(1\) на некотором расстоянии \(\lambda \).
Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние \(\lambda \). Это расстояние называется длиной волны. Колебания частицы \(N+1\) будут идентичны колебаниям частицы \(1\) колебания следующей частицы \(N+2\) будут идентичны колебаниям частицы \(2\) и т. д. Колебания как бы воспроизводят себя на расстоянии \(\lambda \) можно назвать пространственным периодом колебаний; наряду с временным периодом \(T\) она является важнейшей характеристикой волнового процесса. В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1). В поперечной - расстоянию между соседними горбами или впадинами (рис. 2). Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной \(2\pi \)).
Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:
\(v=\frac{\displaystyle \lambda }{\displaystyle T}\).
Частотой волны называется частота колебаний частиц:
\(\nu =\frac{\displaystyle 1}{\displaystyle T}\).
Отсюда получаем связь скорости волны, длины волны и частоты:
\(v=\lambda \nu \). (1)
|
На поверхности жидкости могут существовать волны особого типа, похожие на поперечные - так называемые поверхностные волны. Они возникают под действием силы тяжести и силы поверхностного натяжения. |
|
Звук.
Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука, выше - область ультразвука.
К основным характеристикам звука относятся громкость и высота.
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ - тиканье часов, 50 дБ - обычный разговор, 80 дБ - крик, 130 дБ - верхняя граница слышимости (так называемый болевой порог).
Тон - это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.
Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах - больше, чем в жидкостях.
Например, скорость звука в воздухе при \( 0 c^{\circ} \) равна примерно 340 м/с (её удобно запомнить как "треть километра в секунду")*. В воде звук распространяется со скоростью около 1500 м/с, а в стали - около 5000 м/с.
Заметим, что частота звука от данного источника во всех средах одна и та же: частицы среды совершают вынужденные колебания с частотой источника звука. Согласно формуле (1) заключаем тогда, что при переходе из одной среды в другую наряду со скоростью звука изменяется длина звуковой волны.
|
Если хочешь найти расстояние до грозовых туч в километрах, посчитай, через сколько секунд после молнии придёт гром, и раздели полученное число на три. |
|