Релятивистская динамика
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: полная энергия, связь массы и энергии, энергия покоя.
В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него — к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения — модификацией второго закона Ньютона для теории относительности.
Релятивистская энергия
Предположим, что изолированное тело массы
покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности — это знаменитая формула Эйнштейна:
(1)
Здесь
— энергия тела,
— скорость света в вакууме. Поскольку тело покоится, энергия
, вычиляемая по формуле (1), называется энергией покоя.
Формула (1) утверждает, что каждое тело само по себе обладает энергией — просто потому, что оно существует в природе. Образно говоря, природа затратила определённые усилия на то, чтобы «собрать» данное тело из мельчайших частиц вещества, и мерой этих усилий служит энергия покоя тела. Энергия эта весьма велика; так, в одном килограмме вещества заключена энергия
Дж.
Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна
Дж/кг, поэтому находим:
кг. Это девять миллионов тонн!
Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.
Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.
Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину
приводит к изменению массы тела на
.
Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой
кг на
(удельная теплоёмкость воды равна
) ей нужно передать количество теплоты:
Дж.
Увеличение массы воды будет равно:
кг.
Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.
Формула ( 1) даёт энергию покоящегося тела. Что изменится, если тело движется?
Снова рассмотрим неподвижную систему отсчёта
и систему
, движущуюся относительно
со скоростью
. Пусть тело массы
покоится в системе
; тогда энергия тела в системе
есть энергия покоя, вычисляемая по формуле ( 1). Оказывается, при переходе в систему
энергия преобразуется так же, как и время — а именно, энергия тела в системе
, в которой тело движется со скоростью
, равна:
( 2)
Формула ( 2) была также установлена Эйнштейном. Величина
— это полная энергия движущегося тела. Поскольку в данной формуле
делится на «релятивистский корень», меньший единицы, полная энергия движущегося тела превышает энергию покоя. Полная энергия будет равна энергии покоя только при
.
Выражение для полной энергии ( 2) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.
1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства
>
.
Оно означает, что
<
: скорость массивного тела всегда меньше скорости света.
2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке
в формулу ( 2) её числитель обращается в нуль. Но энергия-то фотона ненулевая!
Единственный способ избежать здесь противоречия — это принять, что безмассовая частица обязана двигаться со скоростью света. Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.
Интуитивно чувствуется, что полная энергия ( 2) состоит из энергии покоя и собственно «энергии движения», т. е. кинетической энергии тела. При малых скоростях движения это показывается явным образом. Используем приближённые формулы, справедливые при
:
( 3)
( 4)
С помощью этих формул последовательно получаем из ( 2):
( 5)
Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:
. ( 6)
При
формула ( 6) переходит в нерелятивистское выражение
.
Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого. В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов. В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!
Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы. Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана
суммарная масса продуктов распада примерно на
меньше массы исходного ядра. Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.
При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!
Рассмотрим в качестве примера два тела массы
, летящих навстречу друг другу с одинаковой скоростью
. В результате неупругого столкновения образуется тело массы
, скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:
,
,
,
.
Мы видим, что,
>
— масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный
, возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.
Релятивистский импульс.
Классическое выражение для импульса
не годится в теории относительности — оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.
Пусть система
движется относительно системы
со скоростью
(рис. 1). Два тела массы
в системе
летят навстречу друг другу с одинаковой скоростью
. Происходит неупругое столкновение.
 |
Рис. 1. К закону сохранения импульса |
В системе
тела после столкновения останавливаются. Давайте, как и выше, найдём массу
образовавшегося тела:
,
откуда
.
Теперь посмотрим на процесс столкновения с точки зрения системы
. До столкновения левое тело имеет скорость:
.
Правое тело имеет скорость:
.
Нерелятивистский импульс нашей системы до столкновения равен:
.
После столкновения получившееся тело массы
двигается со скоростью
.
Его нерелятивистский импульс равен:
.
Как видим,
, то есть нерелятивистский импульс не сохраняется.
Оказывается, правильное выражение для импульса в теории относительности получается делением классического выражения на «релятивистский корень»: импульс тела массы
, двигающегося со скоростью
, равен:
. 7
Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.
Импульс системы до столкновения:
.
Импульс после столкновения:

Вот теперь всё правильно:
!
Связь энергии и импульса.
Из формул ( 2) и ( 7) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:
, 
Преобразуем разность:

Это и есть искомое соотношение:
. ( 8)
Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2) и ( 7) значений
и
мы получим нули в числителе и знаменателе. Но зато с помощью ( 8) легко находим:
, или
( 9)
В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9) находится его импульс.
Релятивистское уравнение движения.
Рассмотрим тело массы
, движущееся вдоль оси
под действием силы
. Уравнение движения тела в классической механике — это второй закон Ньютона:
. Если за бесконечно малое время
приращение скорости тела равно
, то
, и уравнение движения запишется в виде:
. ( 10)
Теперь заметим, что
— изменение нерелятивистского импульса тела. В результате получим «импульсную» форму записи второго закона Ньютона — производная импульса тела по времени равна силе, приложенной к телу:
. ( 11)
Все эти вещи вам знакомы, но повторить никогда не помешает ;-)
Классическое уравнение движения — второй закон Ньютона — является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид). Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным. Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.
То, что второй закон Ньютона ( 10) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.
Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11), где p — релятивистский импульс:
. ( 12)
Производная релятивистского импульса по времени равна силе, приложенной к телу.
В теории относительности уравнение ( 12) приходит на смену второму закону Ньютона.
Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы
. При условии
из формулы ( 12) получаем:
.
Остаётся выразить отсюда скорость:
. ( 13)
Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при
:
, ( 14)
. ( 15)
Формулы ( 14) и ( 15) отличаются от формул ( 3) и ( 4) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства — они часто используются в физике.
Итак, начинаем с малых времён движения. Преобразуем выражение ( 13) следующим образом:
.
При малых
имеем:
.
Последовательно пользуясь нашими приближёнными формулами, получим:
.
Выражение в скобках почти не отличается от единицы, поэтому при малых
имеем:
.
Здесь
— ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно — при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.
Теперь переходим к большим временам. Преобразуем формулу ( 13) по-другому:
.
При больших значениях
имеем:
,
и тогда:
.
Хорошо видно, что при
скорость тела
неуклонно приближается к скорости света
, но всегда остаётся меньше
— как того и требует теория относительности.
Зависимость скорости тела от времени, даваемая формулой ( 13), графически представлена на рис. 2.
 |
Рис. 2. Разгон тела под действием постоянной силы |
Начальный участок графика — почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой
.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Релятивистская динамика» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
06.09.2023