Slider

Сила тяготения.

 


Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: силы в механике, закон всемирного тяготения, сила тяжести, ускорение свободного падения, вес тела, невесомость, искусственные спутники Земли.

Любые два тела притягиваются друг к другу - по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой.

Закон всемирного тяготения.

 

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами m_{\displaystyle 1} и m_{\displaystyle 2} притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния r между ними:

F=G\frac{\displaystyle m_{\displaystyle 1}\displaystyle m_{\displaystyle 2}}{\displaystyle r^{\displaystyle 2}}. (1)

Коэффициент пропорциональности G называется гравитационной постоянной. Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

G=6.67\cdot 10^{-11} \cdot \frac{\displaystyle H\cdot \displaystyle m^{\displaystyle 2}}{\displaystyle kg^{\displaystyle 2}}.

Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаимного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой примерно 6\cdot 10^{24} кг.

Формула (1), будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1. Формула (1) справедлива, если тела являются однородными шарами. Тогда r - расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2. Формула (1) справедлива, если одно из тел - однородный шар, а другое - материальная точка, находящаяся вне шара. Тогда r сстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1) для силы притяжения тела (например, искусственного спутника) к планете.

Сила тяжести.

 

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести - это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести - это сила притяжения к Земле.

Пусть тело массы m лежит на поверхности Земли. На тело действует сила тяжести mg, где g - ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

mg=G\frac{\displaystyle Mm}{\displaystyle R^{\displaystyle 2}},

где M - масса Земли, R\approx 6400 км - радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:

g= G \frac {M}{R^{\displaystyle 2}} . (2)

Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы M и радиуса R.

Если тело находится на высоте h над поверхностью планеты, то для силы тяжести получаем:

mg(h)=G\frac{\displaystyle mM}{\displaystyle (R+h)^{\displaystyle 2}}.

Здесь g(h) - ускорение свободного падения на высоте h:

g(h)=G\frac{\displaystyle M}{\displaystyle (R+h)^{\displaystyle 2}}=\frac{\displaystyle gR^{2}}{\displaystyle (R+h)^{\displaystyle 2}}.

В последнем равенстве мы воспользовались соотношением

GM=gR^{2},

которое следует из формулы (2).

Вес тела. Невесомость.

 

Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела. Вес тела - это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).

Рис. 1. Сила тяжести, реакция опоры и вес тела

 

На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести m\vec{g} (в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости \vec{N} (так называемая реакция опоры). На опору со стороны тела действует сила \vec{P} - вес тела. По третьему закону Ньютона силы \vec{P} и \vec{N} равны по модулю (P=N) и противоположны по направлению.

Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:

m\vec{g}+\vec{N}=\vec{0}\Rightarrow m\vec{g}=-\vec{N}\Rightarrow mg=N.

С учётом равенства N=P получаем mg=P. Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.

Задача. Тело массы m вместе с опорой движется с ускорением a, направленным вертикально вверх. Найти вес тела.

Решение. Направим ось Y вертикально вверх (рис. 2).

Рис. 2. Вес тела больше силы тяжести.

 

Запишем второй закон Ньютона:

m\vec{a}=m\vec{g}+\vec{N}.

Перейдём к проекциям на ось Y:

ma=N-mg.

Отсюда N=mg+ma=m(g+a). Следовательно, вес тела

P=m(g+a).

Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.

Задача. Тело массы m вместе с опорой движется с ускорением a\leqslant g, направленным вертикально вниз. Найти вес тела.

Решение. Направим ось Y вертикально вниз (рис. 3).

Рис. 3. Вес тела меньше силы тяжести.

 

Схема решения та же. Начинаем со второго закона Ньютона:

m\vec{a}=m\vec{g}+\vec{N}.

Переходим к проекциям на ось Y:

ma=mg-N.

Отсюда c. Следовательно, вес тела

P=m(g-a).

В данном случае вес тела меньше силы тяжести. При a=g (свободное падение тела с опорой) вес тела обращается в нуль. Это - состояние
невесомости, при котором тело вообще не давит на опору.

Искусственные спутники.

 

Для того, чтобы искусственный спутник мог совершать орбитальное движение вокруг планеты, ему нужно сообщить определённую скорость. Найдём скорость кругового движения спутника на высоте h над поверхностью планеты. Масса планеты M, её радиус R (рис. 4)

Рис. 4. Спутник на круговой орбите.

 

Спутник будет двигаться под действием единственной силы \vec{F} - силы всемирного тяготения, направленной к центру планеты. Туда же направлено и ускорение спутника - центростремительное ускорение

a=\frac{\displaystyle v^{\displaystyle 2}}{\displaystyle R+\displaystyle h}.

Обозначив через m массу спутника, запишем второй закон Ньютона в проекции на ось, направленной к центру планеты: ma=F, или

m\frac{\displaystyle v^{\displaystyle 2}}{\displaystyle R+\displaystyle h}=G\frac{\displaystyle Mm}{\displaystyle (R+h)^{2}}.

Отсюда получаем выражение для скорости:

v=\sqrt{\frac{\displaystyle GM}{\displaystyle R+h}}.

Первая космическая скорость - это максимальная скорость кругового движения спутника, отвечающая высоте h=0. Для первой космической скорости имеем

v_{\displaystyle 1}=\sqrt{\frac{\displaystyle GM}{\displaystyle R}},

или, с учётом формулы ( 2),

v_{\displaystyle 1}=\sqrt{gR}.

Для Земли приближённо имеем:

v_{\displaystyle 1}=\sqrt{10\cdot 6400000}=8000 m/c = 8 км/с.

 

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ЛЕТНИЕ КУРСЫ ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
РЕКОМЕНДУЕМ:
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.