Закон сохранения энергии для колебательного контура и анализ графика колебаний
Вадим Муранов, победитель всероссийского конкурса «Учитель года», преподаватель физики с 24-летним опытом работы.
Всем добрый день! Рад приветствовать вас на нашем очередном уже 26-ом воскресном мастер-классе!
Тема нашего сегодняшнего мастер-класса «Колебания»
«Сила тока в идеальном колебательном контуре меняется со временем так, как показано на рисунке. Определите заряд конденсатора в момент времени 7 мкс.
Вместо таблицы в этой задаче график колебаний. Что можно определить по данному графику? Прежде всего, любой график колебаний – это зависимость некой величины (не важно какой) от времени. В данном случае, если мы внимательно посмотрим, увидим, что здесь синусоида
Первое, что определяется по графику – это промежуток по времени между двумя пиками или впадинами этого графика. И этот промежуток является периодом колебаний
Второе, что можно определить, – это максимальное значение величины, чей график изображен на рисунке. В данном случае это сила тока, поэтому по максимальной точке можно определить максимальное или амплитудное значение силы тока. Иными словами, верхняя точка графика – это амплитуда той величины, чей это график
Необходимо найти заряд на конденсаторе в момент времени t=7 мкс. Но моменту времени 7 мкс соответствует некое значение силы тока, которое мы можем легко определить по графику. Находим 7 мкс, опускаемся вниз, видим, что это соответствует силе тока
Сразу должен сказать, что этот минус нам ни о чем не говорит, это просто обозначает, что ток течет в другом направлении, поэтому минус для нас неважен. И сам заряд мы так же определим, это будет положительный ответ.
Можно по-разному находить этот заряд: можно составить уравнение заряда в зависимости заряда от времени, и с помощью него определить величину этого заряда, но мы поступим по-другому.
Вспомним, что в нашей задаче написано, что контур идеальный, а, на самом деле, все задачи, с которыми вы будете встречаться в школе, будут связаны с идеальными маятниками и идеальными колебательными контурами.
Для идеального колебательного контура выполняется следующая вещь: в любой момент времени суммарная энергия, сосредоточенная в этом контуре (в конденсаторе и в катушке), будет равна любой из максимальных, то есть максимальной энергии электрического поля или максимальной энергии магнитного поля
Wэ + Wм = Wэм = WМм
Вот это равенство является законом сохранения энергии для идеального колебательного контура. Запомните это равенство, оно вам пригодится в грядущих событиях. Сейчас мы тоже это равенство применим, и даже не один раз.
Еще раз: суммарная энергия, запасенная в контуре, равна максимальным значениям энергии электрического поля конденсатора или максимальному значению энергии магнитного поля. В данном случае нам удобнее приравнять это к максимальной энергии магнитного поля, т. к. нам известна максимальная сила тока.
Запишем
и домножим это равенство на 2С, чтобы полностью убрать все знаменатели.
В итоге получаем
Замечаем, что произведение LC присутствует в формуле периода , знаменитая формула Томсона.
Отсюда выражаем произведение LC и получаем
Заменим LC на , но сначала выразим заряд в квадрате
А теперь вместо LC подставляем и получаем
Далее убираем квадрат у заряда
Теперь подставляем все известные значения и вычисляем по инженерному калькулятору
Получаем приблизительный ответ Кл. Теперь переводим это в микрокулоны 0,57 мкКл. Вот таким должен быть ответ!
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Закон сохранения энергии для колебательного контура и анализ графика колебаний» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
В варианте ЕГЭ-2023 две задачи по теории вероятностей — это №3 и №4. По заданию 4 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
В варианте ЕГЭ-2023 две задачи по теории вероятностей — это №3 и №4. По заданию 4 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.