Сдай ЕГЭ! Бесплатные материалы для подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных согласно 152-ФЗ. Подробнее
banner
Slider
previous arrow
next arrow
Slider

Задание №8 на ЕГЭ по информатике. Измерение количества информации. Основы комбинаторики.

Автор материалов - Лада Борисовна Есакова.

При работе с вычислительной техникой, информационным объемом сообщения называют количество двоичных символов, которое используют для кодирования этого сообщения.

Чтобы найти информационный объем сообщения I, нужно количество символов этого сообщения N умножить на количество бит, выделяемых для кодирования одного символа

K : I = N * K.

Количество символов в некотором алфавите называется мощностью алфавита.

Несложно понять, что количество слов длиной N, составленных из символов (букв) алфавита мощностью M равно MN.

При компьютерном кодировании мощность алфавита равна 2, значит количество слов длиной N равно 2N.

Подсчет количества буквенных цепочек

Пример 1.

Все 5-буквенные слова, составленные из букв А, О, У, записаны в алфавитном порядке. Вот начало списка:

1. ААААА

2. ААААО

3. ААААУ

4. АААОА

……

Запишите слово, которое стоит на 210-м месте от начала списка.

 

Решение:

Заменим буквы А, О, У на 0, 1, 2 и выпишем начало списка:

1. 00000

2. 00001

3. 00002

4. 00010

...

Полученная запись есть числа, записанные в троичной системе счисления в порядке возрастания. Тогда на 210 месте будет стоять число 209 (т. к. первое число 0). Переведём число 209 в троичную систему: 20910 = 212023

Заменим обратно цифры на буквы и получим УОУАУ.

Ответ: УОУАУ

 

Пример 2.

Сколько слов длины 6, начинающихся с согласной буквы, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.

Решение:

На первом месте может стоять две буквы: Г или Д, на остальных — три буквы.

Слов, начинающихся на Г, 35. Слов, начинающихся на Д, тоже 35.Таким образом, можно составить 2 · 35 = 486 слов.

Ответ: 486

 

Пример 3.

Вася составляет 5-буквенные слова, в которых есть только буквы С, Л, О, Н, причём буква С используется в каждом слове ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?

 

Решение:

Пусть С стоит в слове на первом месте. Тогда на каждое из оставшихся 4 мест можно поставить независимо одну из 3 букв. То есть всего 3*3*3*3 = 81 вариант. Таким образом, С можно по очереди поставить на все 5 мест, в каждом случае получая 81 вариант. Итого получается 81 * 5 = 405 слов.

Ответ: 405

 

Количество информации при двоичном (компьютерном) кодировании

 

Пример 4.

Объем сообщения – 7,5 Кбайт. Известно, что данное сообщение содержит 7680 символов. Какова мощность алфавита?

Решение:

Объем сообщения I, написанного в исходном алфавите мощности M, содержащего N символов, равен: I = log2M * N

I = 7680 * log2M

Log2M = (7,5 * 213 бит) / 7680 =(7,5 * 213) /(15 * 29) = 8

M = 28 = 256

Ответ: 256

 

Количество информации при различных (не компьютерных) способах кодирования

Пример 5.

Азбука Морзе позволяет кодировать символы для сообщений по радиосвязи, задавая комбинацию точек и тире. Сколько различных символов (цифр, букв, знаков пунктуации и т. д.) можно закодировать, используя код азбуки Морзе длиной не менее четырёх и не более пяти сигналов (точек и тире)?

Решение:

Мы имеем алфавит из двух букв: точка и тире. Из двух букв можно составить 24 четырёхбуквенных слова и 25 пятибуквенных слов.

Значит, всего можно закодировать 16 + 32 = 48 различных символов.

Ответ: 48

 

Благодарим за то, что пользуйтесь нашими публикациями. Информация на странице «Задание №8 на ЕГЭ по информатике. Измерение количества информации. Основы комбинаторики.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена: 21.09.2023

Поделиться страницей

Это полезно

Теория вероятностей на ЕГЭ-2024 по математике
В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №3 и №4. По заданию 4 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
ЕГЭ Математика
Разбор демоверсии ЕГЭ-2024
по профильной математике