icon icon icon icon
Бесплатно по РФ
banner
previous arrow
next arrow
Slider

Все формулы по геометрии. Площади фигур

Чтобы решить задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.

Для начала выучим формулы площадей фигур. Мы специально собрали их в удобную таблицу. Распечатайте, выучите и применяйте!


Конечно, не все формулы по геометрии есть в нашей таблице. Например, для решения задач по геометрии и стереометрии во второй части профильного ЕГЭ по математике применяются и другие формулы площади треугольника. О них мы обязательно расскажем.

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ.

1. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным 5. Высоты этих треугольников равны 2 и 3. Тогда площадь четырёхугольника равна сумме площадей двух треугольников: S = 5 + 7,5 = 12,5.

Ответ: 12,5.

2. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной 5 и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: S=25-5-5-4,5=10,5.

Ответ: 10,5.

3. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.

На этом рисунке мы видим часть круга. Площадь всего круга равна \pi R^2=\pi, так как R=1. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна 2\pi R=2\pi (так как R=1), а длина дуги данного сектора равна 2, следовательно, длина дуги в \pi раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в \pi раз меньше, чем полный круг (то есть 360 градусов). Значит, и площадь сектора будет в \pi раз меньше, чем площадь всего круга.

Ответ: 1.

Читайте также о задачах на тему "Координаты и векторы". Для их решения вспомните, что такое абсцисса точки (это ее координата по X) и что такое ордината (координата по Y). Пригодятся также такие понятия, как координаты вектора и длина вектора (она находится по теореме Пифагора), синус и косинус угла, угловой коэффициент прямой, уравнение прямой, а также сумма, разность и скалярное произведение векторов, угол между векторами.

Поделиться страницей

Это полезно

Вычисление перемещения по графику проекции скорости
Из кодификатора по физике, 2020. «1.1.3. Вычисление перемещения по графику зависимости υ(t).» Теория и задачи с решениями.
Онлайн курс «Математика профиль 100 баллов»
Детская задача. Спорим, вы ее не решите!