Исследование графика функции
На рисунке изображен график функции
. Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:
- область определения функции;
- область значений функции;
- нули функции;
- промежутки возрастания и убывания;
- точки максимума и минимума;
- наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:
Абсцисса — это координата точки по горизонтали.
Ордината — координата по вертикали.
Ось абсцисс — горизонтальная ось, чаще всего называемая ось X.
Ось ординат — вертикальная ось, или ось Y.
Аргумент — независимая переменная, от которой зависят значения функции. Чаще всего обозначается x.
Другими словами, мы сами выбираем x, подставляем в формулу функции и получаем y.
Область определения функции — множество тех (и только тех) значений аргумента x, при которых функция существует.
Обозначается: D(f) или D(y).
На нашем рисунке область определения функции
— это отрезок
. Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.
Область значений функции — это множество значений, которые принимает переменная
. На нашем рисунке это отрезок
— от самого нижнего до самого верхнего значения
.
Нули функции — точки, где значение функции равно нулю, то есть
. На нашем рисунке это точки
и
.
Значения функции положительны там, где
. На нашем рисунке это промежутки
и
.
Значения функции отрицательны там, где
. У нас это промежуток (или интервал) от
до
.
Важнейшие понятия — возрастание и убывание функции на некотором множестве
. В качестве множества
можно взять отрезок
, интервал
, объединение промежутков или всю числовую прямую.
Функция
возрастает на множестве
, если для любых
и
, принадлежащих множеству
, из неравенства
следует неравенство
.
Иными словами, чем больше
, тем больше
, то есть график идет вправо и вверх.
Функция
убывает на множестве
, если для любых
и
, принадлежащих множеству
, из неравенства
следует неравенство
.
Для убывающей функции большему значению
соответствует меньшее значение
. График идет вправо и вниз.
На нашем рисунке функция
возрастает на промежутке
и убывает на промежутках
и
.
Определим, что такое точки максимума и минимума функции.
Точка максимума — это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума — такая точка, значение функции в которой больше, чем в соседних. Это локальный «холмик» на графике.
На нашем рисунке
— точка максимума.
Точка минимума — внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума — такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».
На нашем рисунке
— точка минимума.
Точка
— граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и
на нашем графике не может быть точкой минимума.
Точки максимума и минимума вместе называются точками экстремума функции. В нашем случае это
и
.
А что делать, если нужно найти, например, минимум функции
на отрезке
? В данном случае ответ:
. Потому что минимум функции — это ее значение в точке минимума.
Аналогично, максимум нашей функции равен
. Он достигается в точке
.
Можно сказать, что экстремумы функции равны
и
.
Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.
В нашем случае наименьшее значение функции на отрезке
равно
и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно
. Оно достигается в левом конце отрезка.
В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Исследование графика функции» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023