Сдай ЕГЭ! Бесплатные материалы для подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных согласно 152-ФЗ. Подробнее
banner
Slider
previous arrow
next arrow
Slider

Показательные уравнения

Рассмотрим уравнение 2x = 8. В какую степень надо возвести 2, чтобы получить 8? Ясно, что в степень 3.

Более того, x = 3 — единственное решение данного уравнения. Почему? Это легко понять, посмотрев на график показательной функции y = 2x: данная функция монотонно возрастает и потому каждое своё значение принимает ровно один раз. Иными словами, не существует других значений x, кроме 3, таких, что 2x = 8.


Простейшее показательное уравнение — это уравнение вида

ax = b, (1)

где a > 1 или 0 < a < 1.

Если b > 0, то уравнение (1) имеет решение, и притом единственное. Действительно, при a > 1 показательная функция монотонно возрастает, а при 0 < a < 1 — монотонно убывает; в любом случае она принимает каждое своё значение ровно один раз.

А вот если b ⩽ 0, то уравнение (1) не имеет решений: ведь показательная функция может принимать только положительные значения.

Любое показательное уравнение после соответствующих преобразований сводится к решению одного или нескольких простейших.

В задачах достаточно представить левую и правую части в виде степеней с одинаковым основанием.

1.

Вспоминаем, что 125 = 53. Уравнение приобретает вид: 5x−7 = 5−3.

В силу монотонности показательной функции показатели степени равны: x − 7 = −3, откуда x = 4.

2.
Поскольку  , уравнение можно записать в виде:
Дальнейшее ясно:
Теперь рассмотрим более сложные уравнения.

3.

Здесь лучше всего вынести за скобку двойку в наименьшей степени:

4.

Делаем замену

Тогда   и относительно t мы получаем квадратное уравнение: Его корни: и

В первом случае имеем: откуда

Во втором случае: решений нет.

Ответ: 3.

5.

Замечаем, что а :


Делим обе части на положительную величину :

Делаем замену:
Полученное квадратное уравнение имеет корни −1 и  .

В случае
решений нет.

В случае

имеем единственный корень

Ответ:

Вообще, показательные уравнения вида

называются однородными. Для них существует стандартный приём решения — деление обеих частей на  (эта величина не равна нулю, так как показательная функция может принимать только положительные значения). Именно этим приёмом мы в данной задаче и воспользовались.

С однородными уравнениями, кстати, мы уже встречались — в тригонометрии. Это были уравнения вида
Их мы решали похожим приёмом — делением на

Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Показательные уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена: 08.03.2023

Поделиться страницей

Это полезно

Теория вероятностей на ЕГЭ-2023 по математике
В варианте ЕГЭ-2023 две задачи по теории вероятностей — это №3 и №4. По заданию 4 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
Самые сложные задачи
Статград от 28.02.2023
ЕГЭ математика профиль