Сдай ЕГЭ! Бесплатные материалы для подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных согласно 152-ФЗ. Подробнее
banner
Slider
previous arrow
next arrow
Slider

Теорема о трех перпендикулярах

Рассмотрим чертеж. На нем изображены плоскость α и лежащая в ней прямая m. Наклонная a пересекает плоскость α в точке М. Прямая а1 — проекция наклонной а на плоскость α.

Сформулируем теорему о трех перпендикулярах:

Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции этой наклонной на данную плоскость.

Теорема о трех перпендикулярах 1

На рисунке показаны все три перпендикуляра.

Если прямая m, лежащая в плоскости, перпендикулярна проекции наклонной, то она перпендикулярна и самой наклонной.

Слова «тогда и только тогда» в формулировке теоремы означают, что прямая m перпендикулярна одновременно и наклонной, и ее проекции. Если m перпендикулярна наклонной, значит, перпендикулярна и ее проекции, и наоборот.

Вот как все это выглядит в пространстве:

Теорема о трех перпендикулярах 2

На нашем чертеже прямая m проведена через основание наклонной. Этого требует формулировка теоремы о трех перпендикулярах в большинстве учебников. Но прямая m, лежащая в плоскости, вовсе не обязана проходить через основание наклонной. Главное — чтобы она была перпендикулярна проекции наклонной. Тогда она будет перпендикулярна и самой наклонной:

Теорема о трех перпендикулярах в общем виде

Теорема о трех перпендикулярах — полезный инструмент для решения задач.

Например, с ее помощью можно доказать, что диагональ куба АС1 перпендикулярна прямой BD:

Или — что скрещивающиеся ребра тетраэдра взаимно перпендикулярны:

Или — что в правильной треугольной призме прямая А1М (где М — середина ВС) перпендикулярна ребру ВС:

Читаем дальше: Параллельное проецирование.

Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Теорема о трех перпендикулярах» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена: 07.02.2023

Поделиться страницей

Это полезно

Теория вероятностей на ЕГЭ-2023 по математике
В варианте ЕГЭ-2023 две задачи по теории вероятностей — это №3 и №4. По заданию 4 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
Математика 100 баллов
Неравенства. 14 задание ЕГЭ
Ященко и реальный ЕГЭ