icon icon icon icon
Бесплатно по РФ
banner
previous arrow
next arrow
Slider

Задание 17. Окружность, круг и их элементы

5. Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.

 

 

 

 

 

Решение.

∠АВD – вписанный. Он опирается на дугу АD и равен половине этой дуги. Находим величину дуги АD.

∠ABC – вписанный. Он опирается на дугу ADC. Величина дуги ADC равна 92° ∙2 = 184°.

∠CAD – вписанный. Он опирается на дугу DC. Значит, величина дуги DC равна

60° ∙ 2 = 120°

Величина дуги АD равна разности величин дуг ADC и DC. Получим:

184° - 120° = 64°

∠ABD = 64° : 2= 32°.

Ответ: 32°

 

6.В треугольнике ABC известно, что AC = 16, BC = 12, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.

 

 

 

 

 

Решение.

Центр описанной около прямоугольного треугольника окружности расположен в середине гипотенузы. То есть гипотенуза является диаметром, а её половина - радиусом.

По теореме Пифагора найдем гипотенузу AB:

AB² = BC² + AC² = 12² + 16² = 144 + 256 = 400

AB =\sqrt{400}=20

Гипотенуза равна 20, значит радиус равен 10.

Ответ: 10

 

<< Назад к списку задач

 

Поделиться страницей

Это полезно

Тест по русскому языку
Тест поможет вам актуализировать знания по некоторым темам.
Ответы присылайте на почту: russkiy@ege-study.ru
Математика Профиль
Задачи №17-19
Видеоразбор Пробного ЕГЭ
от 5 апреля