Сдай ЕГЭ! Бесплатные материалы для подготовки каждую неделю!
null
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных согласно 152-ФЗ. Подробнее
banner
Slider
previous arrow
next arrow
Slider

Задание 26 ОГЭ по Математике. Комплексная геометрическая задача

15. Биссектриса СМ треугольника ABC делит сторону АВ на отрезки AM = 5 и MB =10. Касательная к описанной окружности треугольника ABC, проходящая через точку С, пересекает прямую АВ в точке D. Найдите CD.

Решение.

Построим чертеж:

 

 

 

 

 

 

 

 

Угол между касательной СD и хордой АС равен половине угловой величины дуги АС, заключенной между сторонами этого угла.

Вписанный угол АВС также равен половине угловой величины дуги АС, на которую он опирается.

Значит, углы АСD и DBC равны. Тогда треугольники АСD и CВD подобны по двум углам (угол D у них общий).

Запишем соотношение сходственных сторон треугольников АСD и CВD:

\(\frac{AD}{CD}=\frac{CD}{BD}=\frac{AC}{BC}\)

Биссектриса угла треугольника делит противолежащую сторону в отношении длин прилежащих сторон.

Значит, \(\frac{AC}{BC}=\frac{5}{10}=\frac{1}{2}\)

Пусть АD=х,СD=у. Получим:

\(\frac{x}{y}=\frac{y}{x+15}=\frac{1}{2}\).

Отсюда \(2y=\frac{y}{2}+15; y=10\)

Ответ: 10.

 

<< Назад к списку задач

 

Поделиться страницей

Это полезно

Теория вероятностей на ЕГЭ-2025 по математике
В варианте ЕГЭ-2025 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. Но в нашем бесплатном мини-курсе все это есть.
ЕГЭ Математика
Олимпиада ОММО:
100 баллов за 5 задач