Slider

Переменный ток. 1

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением R, конденсатор ёмкости C и катушку индуктивности L. Изучив поведение этих элементов, мы в следующем листке «Переменный ток. 2» подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

Напряжение на клеммах источника меняется по закону:

U = U_0 \sin \omega t. (1)

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

Текущее значение напряжения U(t) в момент времени t называется мгновенным значением напряжения.

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты \nu = 50 Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: T = 1/ \nu = 0,02 с.

Взаимодействие между зарядами передаётся со скоростью света: c = 3 \cdot 10^8 м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

cT = 6 \cdot 106 м = 6000 км.

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой \omega. Период колебаний равен T = 2 \pi/ \omega, и за это время взаимодействие между зарядами передаётся на расстояние cT. Пусть l — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если l много меньше cT:

l \ll cT. (2)

Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока I во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения U = U_0 \sin \omega t подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) R, называемый также активным сопротивлением (рис. 1)

Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

I = \frac{\displaystyle U}{\displaystyle R \vphantom{1^a}} = \frac{\displaystyle U_0}{\displaystyle R \vphantom{1^a}} \sin \omega t.

Таким образом, сила тока в резисторе также меняется по закону синуса:

I = I_0 \sin \omega t.

Амплитуда тока I_0 равна отношению амплитуды напряжения U_0 к сопротивлению R:

I_0 = \frac{\displaystyle U_0}{\displaystyle R \vphantom{1^a}}.

Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря — синфазно (рис. 2).

Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости C, подключённый к источнику синусоидального напряжения (рис. 3). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через q заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины q совпадает со знаком напряжения U. Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство \dot{q} = I.

Напряжение на конденсаторе равно напряжению источника:

\frac{\displaystyle q}{\displaystyle C \vphantom{1^a}} = U = U_0 \sin \omega t.

Отсюда

q = CU_0 \sin \omega t.

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

I = \dot{q} = CU_0 \omega \cos \omega t. (3)

Графики тока и напряжения представлены на рис. 4. Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на \pi/2 больше фазы напряжения (ток опережает по фазе напряжение на \pi/2).

Рис. 4. Ток через конденсатор опережает по фазе напряжение на \pi/2

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

\cos \varphi = \sin \left ( \varphi + \frac{\displaystyle \pi}{\displaystyle 2 \vphantom{1^a}}  \right ).

Используя её, получим из (3):

I = CU_0 \omega\sin \left ( \omega t + \frac{\displaystyle \pi}{\displaystyle 2 \vphantom{1^a}}  \right ).

И теперь мы чётко видим, что фаза тока больше фазы напряжения на \pi/2.

Для амплитуды силы тока имеем:

I_0 = CU_0 \omega = \frac{\displaystyle U_0}{\displaystyle 1/\left ( \omega C \right ) \vphantom{1^a}}.

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

I_0 = \frac{\displaystyle U_0}{\displaystyle X_C \vphantom{1^a}},

где

X_C = \frac{\displaystyle 1}{\displaystyle \omega C \vphantom{1^a}}.

Величина X_C называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости C), тем за меньшее время по цепи проходит заряд CU_0; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При \omega \rightarrow \infty ёмкостное сопротивление стремится к нулю: X_C \rightarrow 0. Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при \omega \rightarrow 0 имеем X_C \rightarrow \infty. Это неудивительно: случай \omega = 0 отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд CU_0 проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности L (рис. 5). Активное сопротивление катушки считается равным нулю.

Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле \vec{E_B}, которое, оказывается, в точности уравновешивает кулоновское поле \vec{E} движущихся зарядов:

\vec{E} + \vec{E_B} = \vec{0}. (4)

Работа кулоновского поля \vec{E} по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение U. Аналогичная работа вихревого поля — это ЭДС индукции \mathcal E_i.

Поэтому из (4) получаем:

U + \mathcal E_i = 0. (5)

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность I^2R равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея \mathcal E_i = -L \dot{I}, переписываем соотношение (5):

U - L \dot{I} = 0,

откуда

\dot{I} = \frac{\displaystyle U}{\displaystyle L \vphantom{1^a}} = \frac{\displaystyle U_0}{\displaystyle L \vphantom{1^a}} \sin \omega t. (6)

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6). Сообразить это нетрудно (продифференцируйте и проверьте!):

I = -\frac{\displaystyle U_0}{\displaystyle \omega L \vphantom{1^a}} \cos \omega t. (7)

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6.

Рис. 6. Ток через катушку отстаёт по фазе от напряжения на \pi/2

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на \pi/2.

Определить сдвиг фаз можно и с помощью формулы приведения:

\sin \left ( \varphi  -\frac{\displaystyle \pi}{\displaystyle 2 \vphantom{1^a}} \right ) = -\cos \varphi.

Получаем:

I = \frac{\displaystyle U_0}{\displaystyle \omega L \vphantom{1^a}} \sin \left ( \omega t -\frac{\displaystyle \pi}{\displaystyle 2 \vphantom{1^a}} \right ).

Непосредственно видим, что фаза силы тока меньше фазы напряжения на \pi/2.

Амплитуда силы тока через катушку равна:

I_0 = \frac{\displaystyle U_0}{\displaystyle \omega L \vphantom{1^a}}.

Это можно записать в виде, аналогичном закону Ома:

I_0 = \frac{\displaystyle U_0}{\displaystyle X_L \vphantom{1^a}},

где

X_L = \omega L.

Величина X_L называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что X_L будет больше.

2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При \omega \rightarrow  \infty имеем X_L \rightarrow  \infty, т. е. высокочастотный ток практически не проходит через катушку.

Наоборот, при \omega = 0 имеем X_L = 0. Для постоянного тока катушка является коротким замыканием цепи.

И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
РЕКОМЕНДУЕМ:
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.