Модуль числа
Модуль числа и уравнения с модулем — тема особенная, прямо-таки заколдованная :-) Она совсем не сложная, просто в школе её редко объясняют нормально. В результате без специальной подготовки почти никто из школьников не может дать правильное определение модуля и тем более решить уравнение с модулем. И эту картину мы наблюдаем на протяжении многих лет.
Поэтому осваивайте тему «Уравнения и неравенства с модулем» по нашим статьям и на наших занятиях! Вы сумеете обойти множество конкурентов на ЕГЭ, олимпиадах и вступительных экзаменах.
Модуль числа называют ещё абсолютной величиной этого числа. Попросту говоря, при взятии модуля нужно отбросить от числа его знак. В записи положительного числа и так нет никакого знака, поэтому модуль положительного числа равен ему самому. Например,
Модуль нуля равен нулю. А модуль отрицательного числа равен противоположному ему положительному (без знака!).
Например, 
Обратите внимание: модуль числа всегда неотрицателен: 
Определение модуля
Вот оно:

От большинства известных из школы определений оно отличается лишь одним: в нём есть выбор. Есть условие. И в зависимости от этого условия мы раскрываем модуль либо так, либо иначе.
Так же, как в информатике — в разветвляющихся алгоритмах с применением условных операторов. Как, вообще-то, и в жизни: сдал ЕГЭ на минимальный балл — можешь подавать документы в ВУЗ. Не сдал на минимальный балл — можешь идти в армию :-)
Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению. Например,

В некоторых случаях модуль раскрывается однозначно. Например,
так как выражение под знаком модуля неотрицательно при любых x и y. Или:
так так как выражение под модулем неположительно при любых z.
Геометрическая интерпретация модуля
Нарисуем числовую прямую. Модуль числа — это расстояние от нуля до данного числа. Например,
То есть расстояние от точки −5 до нуля равно 5.
Эта геометрическая интерпретация очень полезна для решения уравнений и неравенств с модулем.
Рассмотрим простейшее уравнение
. Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и −3. Значит, у уравнения
есть два решения: x = 3 и x = −3.
Вообще, если имеются два числа, a и b, то
равно расстоянию между ними на числовой прямой.
(В связи с этим нередко встречается обозначение
длины отрезка AB, то есть расстояния от точки A
до точки B.)
Ясно, что
(расстояние от точки a до точки b равно расстоянию от точки b до точки a).
Решим уравнение
. Эту запись можно прочитать так: расстояние от точки x до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.
Мы видим, что наше уравнение имеет два решения: −1 и 7. Мы решили его самым простым способом — без использования определения модуля.
Перейдём к неравенствам. Решим неравенство:
.
Эту запись можно прочитать так: «расстояние от точки x до точки −7 меньше четырёх». Отмечаем на числовой прямой точки, удовлетворяющие этому условию.
Ответ: (-11; -3).
Другой пример. Решим неравенство: |10 − x| ≥ 7.
Расстояние от точки 10 до точки x больше или равно 7. Отметим эти точки на числовой прямой.
Ответ:
.
График функции 
Этот график надо знать обязательно. Для
имеем y = x. Для
имеем y = −x. В результате получаем:
С помощью этого графика также можно решать уравнения и неравенства.
Корень из квадрата
Нередко в задачах ЕГЭ требуется вычислить
, где
– некоторое число или выражение. Не забывайте, что 
Действительно, по определению арифметического квадратного корня
— это такое неотрицательное число, квадрат которого равен
. Оно равно
при
и
при
, т. е. как раз
.
Примеры заданий ЕГЭ
1. Найдите значение выражения:
при
.
Заметим, что
при
. Следовательно, значение нашего выражения равно:
.
2. Найдите значение выражения:
при
.
Действуем аналогично:
.
В следующей статье мы рассмотрим более сложные уравнения и неравенства с модулем.
Читайте также: Уравнения с модулем
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Модуль числа» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.03.2023