Данная статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
Это самый простой случай. Решим уравнение |x2 − 5x + 4| = 4.
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
x2 − 5x + 4 = 4 или x2 − 5x + 4 = −4.
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Ответ: 0; 5.
Здесь приходится раскрывать модуль по определению. . . или соображать!
1. |2 − x| = 5 − 4x
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: x = 1. У второй системы решений нет.
Ответ: 1.
2. x2 + 4|x − 3| − 7x + 11 = 0.
Первый случай: x ≥ 3. Снимаем модуль:
Число x2, будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число x1. Для этого составим разность и определим её знак:
Значит, x1 больше трёх и потому является корнем исходного уравнения
Второй случай: x < 3. Снимаем модуль:
Число x3 больше, чем , и потому не удовлетворяет условию x < 3. Проверим x4:
Значит, x4 является корнем исходного уравнения.
Ответ:
3. |2x2 − 3x − 4| = 6x − 1.
Снимать модуль по определению? Страшно даже подумать об этом, ведь дискриминант — не точный квадрат. Давайте лучше воспользуемся следующим соображением: уравнение вида |A| = B равносильно совокупности двух систем:
То же самое, но немного по-другому:
Иными словами, мы решаем два уравнения, A = B и A = −B, а потом отбираем корни, удовлетворяющие условию B ≥ 0.
Приступаем. Сначала решаем первое уравнение:
Затем решаем второе уравнение:
Теперь в каждом случае проверяем знак правой части:
Стало быть, годятся лишь x1 и x3.
Ответ:
Решим уравнение: x2 + 2|x| − 3 = 0.
Поскольку x2 = |x|2, удобно сделать замену |x| = t. Получаем:
Ответ: ±1.
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: |3x2 + 5x − 9| = |6x + 15|. Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Решим уравнение: |x − 1| − 2|x − 2| + 3|x − 3| = 4.
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Ответ: [1; 2] ∪ {5}.
Решим уравнение: ||3 − x| − 2x + 1| = 4x − 10.
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
2) x ≥ 3. Имеем:
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Ответ: 4.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Никаких принципиально новых идей здесь не возникает. Всеми необходимыми знаниями вы уже владеете. Поэтому мы разберём лишь две задачи. Остальное — на занятиях и в домашних заданиях.
1. 2|x − 4| + |3x + 5| ≥ 16.
1) x ≥ 4. Имеем:
Полученное неравенство выполняется при всех рассматриваемых x ≥ 4. Иными словами, все числа из промежутка [4; +∞) являются решениями нашего неравенства.
2) Имеем в данном случае:
Учитывая, в каком промежутке мы сейчас находимся, получаем в качестве решений исходного неравенства множество [3; 4].
3) . Имеем:
Так как − , то все значения x из полученного промежутка
служат решениями исходного неравенства.
Остаётся объединить множества решений, полученные в трёх рассмотренных случаях.
Ответ:
2. |x2 − 2x − 3| < 3x − 3.
Это задача №6 теоретической части урока 8 книги В. В. Ткачука «Математика — абитуриенту». Автор решает её методом интервалов. Обязательно разберите авторское решение!
Заметим, что метод интервалов здесь проходит весьма безболезненно по той причине, что корни квадратного трёхчлена под модулем — целые числа. А если дискриминант не будет точным квадратом? Замените, например, под модулем −3 на −5. Объём вычислительной работы тогда существенно возрастёт.
Мы покажем вам другой способ решения этой задачи, не зависящий от капризов дискриминанта.
Наше неравенство имеет вид |A| < B. Очевидны следующие утверждения.
• Если B ≤ 0, то неравенство не имеет решений.
• Если B > 0, то неравенство равносильно двойному неравенству −B < A < B или, что то же самое, системе
Иными словами, мы берём пересечение множества решений данной системы с множеством решений неравенства B > 0, то есть решаем систему
В нашей задаче получаем:
Изобразим множества решений этих неравенств на рисунке. Чёрным цветом показаны решения первого (двойного) неравенства; зелёный цвет — решения совокупности; синий цвет — решения последнего неравенства системы.
Решением системы служит пересечение этих множеств, т. е. множество, над которым присутствуют линии всех трёх цветов. Оно заштриховано.
Ответ: (2; 5).
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!
СмотретьДля нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.
Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.
Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.
Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.
Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.
Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.
Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.
Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.