previous arrow
next arrow
Slider

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение |x_2 - 5x + 4| = 4.

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

x_2 - 5x + 4 = 4 или x_2 - 5x + 4 = -4.

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Ответ: 0; 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

1. |2 - x| = 5 - 4x

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

   

Решение первой системы: x = 1. У второй системы решений нет.
Ответ: 1.

2. x_2 + 4|x - 3| - 7x + 11 = 0.

Первый случай: x ≥ 3. Снимаем модуль:

Число x^2, будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число x_1. Для этого составим разность и определим её знак:

Значит, x_1 больше трёх и потому является корнем исходного уравнения

Второй случай: x < 3. Снимаем модуль:

Число x_3. больше, чем , и потому не удовлетворяет условию x < 3. Проверим x_4:

Значит, x_4. является корнем исходного уравнения.

Ответ:

3. |2x_2 - 3x - 4| = 6x - 1.

Снимать модуль по определению? Страшно даже подумать об этом, ведь дискриминант — не полный квадрат. Давайте лучше воспользуемся следующим соображением: уравнение вида |A| = B равносильно совокупности двух систем:

   

То же самое, но немного по-другому:

Иными словами, мы решаем два уравнения, A = B и A = −B, а потом отбираем корни, удовлетворяющие условию B ≥ 0.

Приступаем. Сначала решаем первое уравнение:



Затем решаем второе уравнение:

Теперь в каждом случае проверяем знак правой части:

Стало быть, годятся лишь x_1 и x_3.

Ответ:

Квадратные уравнения с заменой |x| = t

Решим уравнение: x_2 + 2|x| - 3 = 0.

Поскольку x_2 = |x|_2, удобно сделать замену |x| = t. Получаем:

Ответ: ±1.

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: |3x_2 + 5x - 9| = |6x + 15|. Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Решим уравнение: |x - 1| - 2|x - 2| + 3|x - 3| = 4.

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Ответ: [1; 2] ∪ {5}.

Модуль в модуле

Решим уравнение: ||3 - x| - 2x + 1| = 4x - 10.

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

2) x ≥ 3. Имеем:

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Ответ: 4.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Это полезно

Профориентация. Профессии и образование для них.
Что нужно, чтобы обладать интерсной профессией? Или на какую профессию можно переквалифицироваться, обладая определенным образованием? Узнайте в этом разделе!
Видеокурс «СуперГИА» для сдачи ГИА (ОГЭ)
Новое на ютуб: Разбор досрочного ЕГЭ. Ловушки I части.
Поделиться страницей

Это полезно

Вычисление перемещения по графику проекции скорости
Из кодификатора по физике, 2020. «1.1.3. Вычисление перемещения по графику зависимости υ(t).» Теория и задачи с решениями.
Онлайн курс «Математика профиль 100 баллов»
Разбор тренировочной работы номер 3 по математике 11 класс
Новое на ютуб: Разбор досрочного ЕГЭ. Ловушки I части.