Анна Малкова
Многие старшеклассники считают, что геометрия сложнее алгебры. «В алгебре все просто, - говорят они. – Есть способы решения уравнений. Есть типы задач – на движение, на работу, на проценты – и для каждой свои приемы решения. А задачи геометрии друг на друга не похожи».
Так ли это? Может быть, и в планиметрии есть схемы, на которых строится множество задач?
Да, есть. Я называю их «классические схемы планиметрии». Учимся узнавать их и использовать в задачах! И возможно, что на ЕГЭ вам встретится задача, «ключиком» к которой будет одна из этих схем. Конечно, на ЕГЭ эти утверждения надо доказывать.
Вот 5 полезных схем для решения задач по планиметрии.
Схема 1. В треугольнике АВС проведены высоты АМ и СК.
H – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК
1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
\(k=cosB\), если , и , если
- Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
- Четырехугольник ВКМН также можно вписать в окружность.
- Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
- \(BH=2R\left | cosB \right |\), где R – радиус описанной окружности \(\triangle ABC\).
Схема 2. Пусть луч МА пересекает окружность в точках А и В, а луч МD – в точках С и D, причем МА > МВ, МD > МС. Тогда треугольники ВМС и DМА подобны.
Схема 3. У треугольников АВС и АМС сторона АС – общая, угол В равен углу М, причем точки В и М лежат по одну сторону от прямой АС. Тогда точки А, В, С, М лежат на одной окружности.
Схема 4. У треугольников АВС и АМС сторона АС – общая, углы В и М – прямые. Тогда точки А, В, С, М лежат на окружности, радиус которой равен половине АС.
Схема 5. Лемма о трезубце (трилистнике)
И несколько лайфхаков для сдающих ЕГЭ.
1) Любая задача из варианта ЕГЭ решается без сложных формул. И если вы не помните теорему Чевы, теорему Менелая и другую экзотику – вам это и не понадобится. Только то, что есть в нашем Супер-Справочнике . И полезные факты. Зато знать это надо наизусть.
2) Когда вы отлично знаете все теоремы, формулы, свойства геометрических фигур – у вас в голове выстраивается цепочка ассоциаций. Например, в условии задачи дан радиус вписанной окружности. В каких формулах он встречается? – Правильно, в теореме синусов и в одной из формул для площади треугольника.
3) Есть такие теоремы, которые вроде и входят в школьную программу – а попробуй их найди в учебнике. Например, теорема о секущей и касательной или свойство биссектрисы треугольника. А вы их знаете?
4) Как научиться решать задачи по геометрии? Если у вас маловато опыта – не стоит начинать с реальных задач ЕГЭ. Сначала – задачи на доказательство. Тем более что в реальной задаче 16 из варианта ЕГЭ первый пункт – доказательство.
5) Если вы вдруг не можете решить пункт (а), но решили пункт (б), вы получите за него один балл. А это лучше, чем ничего. Но вообще пункт (а), как правило, бывает простым. Иногда вопрос в пункте (а) очень простой. И это не только для того, чтобы вы получили «утешительный» балл. Помните, что пункт (а) часто содержит подсказку, идею для решения пункта (б).
6) Среди стратегий подготовки к ЕГЭ есть эффективные. А есть откровенно проигрышные.
Пример плохой стратегии – когда старшеклассник принимает решение заниматься только алгеброй и считает планиметрию и тем более стереометрию слишком сложными для себя. И вот на ЕГЭ попадается сложное неравенство или «экономическая» задача. И всё, баллов не хватает! Тех самых баллов за планиметрию и стереометрию, которые можно было взять, не хватает для поступления!
Чтобы такого не случилось – занимаемся планиметрией как можно больше.
7) Стоит учесть, что задачи вариантов ЕГЭ по планиметрии и стереометрии бывают намного проще, чем по алгебре.