previous arrow
next arrow
Slider

«Классические» схемы для решения задач по геометрии

Анна Малкова

Многие старшеклассники считают, что геометрия сложнее алгебры. «В алгебре все просто, - говорят они. – Есть способы решения уравнений. Есть типы задач – на движение, на работу, на проценты – и для каждой свои приемы решения. А задачи геометрии друг на друга не похожи».

Так ли это? Может быть, и в планиметрии есть схемы, на которых строится множество задач?

Да, есть. Я называю их «классические схемы планиметрии». Учимся узнавать их и использовать в задачах! И возможно, что на ЕГЭ вам встретится задача, «ключиком» к которой будет одна из этих схем. Конечно, на ЕГЭ эти утверждения надо доказывать.

Вот 5 полезных схем для решения задач по планиметрии.

Схема 1. В треугольнике АВС проведены высоты АМ и СК.

H – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК

1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
k=cosB, если , и , если 

  1. Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
  2. Четырехугольник ВКМН также можно вписать в окружность.
  3. Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
  4. BH=2R\left | cosB \right |, где R – радиус описанной окружности \triangle ABC.

Схема 2. Пусть луч МА пересекает окружность в точках А и В, а луч МD –  в точках С и D, причем МА > МВ, МD > МС. Тогда треугольники ВМС и DМА подобны.

Схема 3. У треугольников АВС и АМС сторона АС – общая, угол В равен углу М, причем точки В и М лежат по одну сторону от прямой АС. Тогда точки А, В, С, М лежат на одной окружности.

Схема 4. У треугольников АВС и АМС сторона АС – общая, углы В и М – прямые. Тогда точки А, В, С, М лежат на окружности, радиус которой равен половине АС.

Схема 5. Лемма о трезубце (трилистнике)

 

И несколько лайфхаков для сдающих ЕГЭ.

1) Любая задача из варианта ЕГЭ решается без сложных формул. И если вы не помните теорему Чевы, теорему Менелая и другую экзотику – вам это и не понадобится. Только то, что есть в нашем Супер-Справочнике . И полезные факты. Зато знать это надо наизусть.

2) Когда вы отлично знаете все теоремы, формулы, свойства геометрических фигур – у вас в голове выстраивается цепочка ассоциаций. Например, в условии задачи  дан радиус вписанной окружности. В каких формулах он встречается? – Правильно, в теореме синусов и в одной из формул для площади треугольника.

3) Есть такие теоремы, которые вроде и входят в школьную программу – а попробуй их найди в учебнике. Например, теорема о секущей и касательной или свойство биссектрисы треугольника. А вы их знаете?

4) Как научиться решать задачи по геометрии? Если у вас маловато опыта – не стоит начинать с реальных задач ЕГЭ. Сначала – задачи на доказательство. Тем более что в реальной задаче 16 из варианта ЕГЭ первый пункт – доказательство.

5) Если вы вдруг не можете решить пункт (а), но решили пункт (б), вы получите за него один балл. А это лучше, чем ничего. Но вообще пункт (а), как правило, бывает простым. Иногда вопрос в пункте (а) очень простой. И это не только для того, чтобы вы получили «утешительный» балл. Помните, что пункт (а) часто содержит подсказку, идею для решения пункта (б).

6) Среди стратегий подготовки к ЕГЭ есть эффективные. А есть откровенно проигрышные.

Пример плохой стратегии – когда старшеклассник принимает решение заниматься только алгеброй и считает планиметрию и тем более стереометрию слишком сложными для себя. И вот на ЕГЭ попадается сложное неравенство или «экономическая» задача. И всё, баллов не хватает! Тех самых баллов за планиметрию и стереометрию, которые можно было взять, не хватает для поступления!

Чтобы такого не случилось – занимаемся планиметрией как можно больше.

7) Стоит учесть, что задачи вариантов ЕГЭ по планиметрии и стереометрии бывают намного проще, чем по алгебре.

Благодарим за то, что пользуйтесь нашими материалами. Информация на странице ««Классические» схемы для решения задач по геометрии» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена: 05.09.2023