Slider

Задание 19. Числа и их свойства — профильный ЕГЭ по Математике

Вот она! Загадочная. Нестандартная. Задача 19 Профильного ЕГЭ по математике.

Эта задача оценивается в целых 4 первичных балла, и они пересчитываются в 9-10 тестовых.

Можно ничего не знать. И удачно подобрать пример. И получить 1 балл за пункт (а). Во всяком случае, попробовать это сделать.

А можно потратить 2 часа на перебор вариантов… и так ничего и не найти. Если не знаешь секретов решения этой задачи. ОК, некоторые из секретов мы расскажем.

Действительно, пункт (а) в задаче 19 почти всегда решается сразу. Пункт (б) тоже решается быстро, но только если повезет. Пункт (в) без специальной подготовки решить невозможно.

Необходимая теория для решения задач на числа и их свойства - это всего две страницы. Делимость чисел, наибольший общий делитель и наименьшее общее кратное, основная теорема арифметики, признаки делимости на 3, на 4, на 5, на 8, 9, 10 и 11. Ничего сложного.

Повторите также темы: Арифметическая прогрессия и Геометрическая прогрессия

Начинать лучше всего с подготовительных задач.

Затем стоит освоить метод «Оценка плюс пример». Для того чтобы применить этот метод, от строгих оценок, которые даны в условии (со знаками > или < ), переходим к нестрогим (со знаками ≥ или ≤ ).

Узнать о секретах решения задания 19 Профильного ЕГЭ по математике.

Узнать больше о решении уравнений в целых числах. В школьных учебниках этого нет.

Один из необходимых навыков для решения пункта (в) – работа с неравенствами. В школьных учебниках этого тоже нет.

Многие считают, что если в этой задаче в пункте (а) ответ «да», то во втором обязательно должно быть «нет». Авторитетно заявляем: нет, необязательно! Может быть любое сочетание из «да» и «нет». И может быть «да» в обоих пунктах, и «нет» в обоих.

Если вопрос в этой задаче (неважно, в каком пункте) формулируется как «Может ли быть…» - и дальше некоторое утверждение, и ваш ответ: «Да», - то одного вашего «Да» недостаточно. Нужен пример. И если вы его подберете, вы не обязаны объяснять, как нашли его.

Если ответ на этот вопрос: «Нет», то вам нужно это доказать. «Нет, потому что…» - и приводите свое доказательство.

В общем, проще показать это на примерах:

1. За прохождение каждого уровня игры на планшете можно получить от одной до трёх звёзд. При этом заряд аккумулятора планшета уменьшается на 3 пункта при получении трёх звёзд, на 6 пунктов при получении двух звёзд и на 9 пунктов при получении одной звезды. Витя прошёл несколько уровней игры подряд.

а) Мог ли заряд аккумулятора уменьшиться ровно на 32 пункта?

б) Сколько уровней игры было пройдено, если заряд аккумулятора уменьшился на 33 пункта и суммарно было получено 17 звёзд?

в) За пройденный уровень начисляется 9000 очков при получении трёх звёзд, 5000 — при получении двух звёзд и 2000 — при получении одной звезды. Какое наибольшее количество очков мог получить Витя, если заряд аккумулятора уменьшился на 33 пункта и суммарно было получено 17 звёзд?

а) Заметим, что заряд аккумулятора при прохождении уровня уменьшается на 3, 6 или 9 пунктов, и все эти числа делится на 3. Поскольку 32 не делится на 3, заряд не мог уменьшиться на 32 пункта.

б) Да, на 33 пункта заряд мог уменьшиться.

Пусть на х уровнях получено по 3 звезды, на у уровнях по 2 звезды и на z уровнях по 1 звезде.

Тогда:

3x+2y+z=17

3x+6y+9z=33, то есть x+2y+3z=11.

Сложив уравнения 3x+2y+z=17 и x+2y+3z=11, получим, что x+y+z=7 (пройдено 7 уровней).

Системе удовлетворяют z=1,\;y=2,\;x=4. При этом заряд аккумулятора уменьшился на 33 пункта.

в) Поскольку x+2y+3z=11 и x+y+z=7, получаем, что y+2z=4. Возможны варианты:

z=0, тогдаy=4,\;x=3, получено 47 тысяч очков.

z=1, тогда y=2,\;x=4, получено 48 тысяч очков.

z=2, тогда y=0,\;x=5, получено 49 тысяч очков – это максимально возможное количество.

Это была простая задача №19. А вот сложная.

2. В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писал 51 учащийся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 вырасти в два раза?

б) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Мог ли первоначальный балл в школе № 2 равняться 1?

в) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Пусть в первой школе писали тест n учеников, а во второй m учеников, причем
m=51-n, n\geq 2,\;m\geq 2.

Пусть учащиеся первой школы набрали в сумме S_{1} балл, а учащиеся второй S_{2} баллов.

Тогда средние баллы равны \frac{S_{1}}{n} и \frac{S_{2}}{m}.

Пусть из первой школы во вторую перешел ученик, набравший за тест k баллов.

а) Предположим, что средний балл в школе № 1 вырос в два раза. Тогда \frac{2S_1}{n}= \frac{S_1 - k}{n-1}.

Отсюда: S_{1}\left ( n-2 \right )=-kn.

Поскольку kn положительно, получаем, что  – противоречие с условием.

Ответ в пункте (а): нет.

б) Во втором пункте ответ тоже «нет». Предположим, что \frac{S_{2}}{m}=1. Получим:

\frac{S_{1}-k}{n-1}=1,1\cdot \frac{S_{1}}{n}

\frac{S_{2}+k}{m+1}=1,1\cdot \frac{S_{2}}{m}.
Поскольку m=51-n,

\frac{S_{2}+k}{52-n}=1,1\cdot \frac{S_{2}}{51-n}.

Если \frac{S_{2}}{m}=1,то \frac{S_{2}}{51-n}.

Тогда:

\frac{51-n+k}{52-n}=1,1. Отсюда:

10k+n=62. Очевидно, k\leq 6 и n=62-10k.

Что будет, если k=6? Тогда n=62-10k=2.

Подставив эти n и k в уравнение

\frac{S_{1}-k}{n-1}=1,1\cdot \frac{S_{1}}{n} , получим: \frac{S_{1}-6}{2-1}=1,1\cdot \frac{S_{1}}{2}, S_{1}=\frac{40}{3}, противоречие с условием, поскольку S_{1} – целое. Значит, 

С другой стороны, из условия \frac{S_{1}-k}{n-1}=1,1\cdot \frac{S_{1}}{n} получаем, что
10kn=S_{1}\left ( 11-n \right ), значит, 2\leq n\leq 10.

Но если n=62-10k\leq 10, то 10k\geq 52 и k\geq 6 – получили противоречие.

в) По условию, и в первой, и во второй школах первоначально средний балл был целым числом. Он не может быть равен единице (из пункта (б)). Проверим, может ли он быть равен 2, 3, 4…

Пусть первоначально средний балл равен 2. Тогда

\frac{S_{1}-k}{n-1}=1,1\cdot \frac{S_{1}}{n}

\frac{S_{2}+k}{52-n}=\frac{1,1\cdot S_{2}}{51-n}

\frac{S_{2}}{m}=2. Условие 2\leq n\leq 10 по-прежнему должно выполняться.

Преобразуя эти уравнения, получим:

S_{2}=2\left ( 51-n \right )=102-2n

\frac{102-2n+k}{52-n}=1,1\cdot 2

1020-20n+10k=22\cdot 52-22n

2n+10k=124

n=62-5k

2\leq 62-5k\leq 10.

Значит, k\geq \frac{52}{5} и k\leq 12. Подходит k = 11 и k = 12.

При таких значениях k уравнение n=62-5k имеет решения n = 7 или n = 2.

Подставим поочередно пары k = 11, n = 7 и k = 12, n = 2 в уравнение

\frac{S_{1}-k}{n-1}=1,1\cdot \frac{S_{1}}{n} , получим, что целых решений S_{1} это уравнение не имеет.

Пусть первоначально средний балл равен 3. Тогда

\frac{S_{1}-k}{n-1}=1,1\cdot \frac{S_{1}}{n}

\frac{S_{2}+k}{52-n}=\frac{1,1\cdot S_{2}}{51-n}

\frac{S_{2}}{m}=3,2\leq n\leq 10

\frac{153-3n+k}{52-n}=1,1\cdot 3

3n+10k=186, подходит n = 2, k = 18, тогда S_{1}=40.

Например, в первой школе тест писали 2 учащихся и набрали 22 и 18 баллов. В школе № 2 писали тест 49 учащихся и каждый набрал по три балла, а у перешедшего из одной школы в другую учащегося 18 баллов.

Да, непростая это задача, девятнадцатая из варианта ЕГЭ. Но если к ней привыкнуть, потренироваться, - то вполне можно решить и заработать необходимые на ЕГЭ баллы. Мы учим решать эту задачу на наших интенсивах в ЕГЭ-Студии, а также на Онлайн-курсе. Многим нашим выпускникам она обеспечила поступление на бюджетные отделения ведущих вузов.

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

НОВЫЙ НАБОР 2020 ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.