previous arrow
next arrow
Slider

Алгебра – основные понятия и формулы

В школьном курсе алгебры не так уж много теории. Намного больше практики, то есть секретов и приемов решения задач. Хороший репетитор-математик вряд ли будет читать вам на каждом уроке длинные лекции. Он скажет: «Смотри, как решаются такие задачи!»

И все-таки минимальное знание теории необходимо. Основные понятия и формулы надо знать наизусть.

Например, что такое квадратный корень из неотрицательного числа?

Что такое модуль числа?

Для каких чисел существуют логарифмы?

Чем действительные числа отличаются от рациональных?

Как узнать, что число делится на 11?

На этой странице – все основные темы и понятия алгебры, необходимые учащимся 10-11 класса. И еще – полезная информация о том, как считать быстро и без калькулятора и как легко запоминать формулы.

Числовые множества

Делимость чисел

Правила округления чисел 

Таблица квадратов натуральных чисел и формулы сокращенного умножения

ЕГЭ без ошибок. Считаем быстро и без калькулятора

Как запоминать формулы

Основы логики. Система условий, совокупность условий

Квадратный корень

Корни и степени

Логарифмы

Модуль числа

Число e

Проверь себя. Помнишь ли ты основные понятия алгебры?

- Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

{(\sqrt{a})}^2=a; \, \sqrt{a}\ge 0; \, a\ge 0.

- Определение модуля числа:

- Что такое \sqrt{a^2}?  Запомним: \sqrt{a^2} = \left |a \right |.

- Знаешь ли ты, что корни второй, третьей, четвертой, пятой, n-ной степени можно записывать просто как степени? И это намного удобнее. Например, \sqrt[{\ }]{2}=\ 2^{\frac{1}{2}}, a \ \sqrt[5]{a^3}=\ a^{\frac{3}{5}}.

Напомним, что корень третьей степени из а – такое число, при возведении которого в третью степень получается число а.

Аналогично, корень четвертой степени из а – такое неотрицательное число, при возведении которого в четвертую степень получается число а.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a , чтобы получить b.

\boldsymbol{{{log}_a b=c }\Leftrightarrow a^c = b. }

При этом b \textgreater 0,\, \, a \textgreater 0,\, \, a\ne 1.