Slider

Задача №10. Измерение количества информации. Основы комбинаторики.

Автор материалов - Лада Борисовна Есакова.

При работе с вычислительной техникой, информационным объемом сообщения называют количество двоичных символов, которое используют для кодирования этого сообщения.

Чтобы найти информационный объем сообщения I, нужно количество символов этого сообщения N умножить на количество бит, выделяемых для кодирования одного символа

K : I = N * K.

Количество символов в некотором алфавите называется мощностью алфавита.

Несложно понять, что количество слов длиной N, составленных из символов (букв) алфавита мощностью M равно MN.

При компьютерном кодировании мощность алфавита равна 2, значит количество слов длиной N равно 2N.

Подсчет количества буквенных цепочек

Пример 1.

Все 5-бук­вен­ные слова, со­став­лен­ные из букв А, О, У, за­пи­са­ны в ал­фа­вит­ном по­ряд­ке. Вот на­ча­ло спис­ка:

1. ААААА

2. ААААО

3. ААААУ

4. АААОА

……

За­пи­ши­те слово, ко­то­рое стоит на 210-м месте от на­ча­ла спис­ка.

 

Решение:

За­ме­ним буквы А, О, У на 0, 1, 2 и вы­пи­шем на­ча­ло спис­ка:

1. 00000

2. 00001

3. 00002

4. 00010

...

По­лу­чен­ная за­пись есть числа, за­пи­сан­ные в тро­ич­ной си­сте­ме счис­ле­ния в по­ряд­ке воз­рас­та­ния. Тогда на 210 месте будет сто­ять число 209 (т. к. пер­вое число 0). Пе­ре­ведём число 209 в тро­ич­ную систему: 20910 = 212023

Заменим обратно цифры на буквы и получим УОУАУ.

Ответ: УОУАУ

 

Пример 2.

Сколь­ко слов длины 6, на­чи­на­ю­щих­ся с со­глас­ной буквы, можно со­ста­вить из букв Г, О, Д? Каж­дая буква может вхо­дить в слово не­сколь­ко раз. Слова не обя­за­тель­но долж­ны быть осмыс­лен­ны­ми сло­ва­ми рус­ско­го языка.

Решение:

На пер­вом месте может сто­ять две буквы: Г или Д, на осталь­ных — три буквы.

Слов, начинающихся на Г, 35. Слов, начинающихся на Д, тоже 35.Таким об­ра­зом, можно со­ста­вить 2 · 35 = 486 слов.

Ответ: 486

 

Пример 3.

Вася со­став­ля­ет 5-бук­вен­ные слова, в ко­то­рых есть толь­ко буквы С, Л, О, Н, причём буква С ис­поль­зу­ет­ся в каж­дом слове ровно 1 раз. Каж­дая из дру­гих до­пу­сти­мых букв может встре­чать­ся в слове любое ко­ли­че­ство раз или не встре­чать­ся со­всем. Сло­вом счи­та­ет­ся любая до­пу­сти­мая по­сле­до­ва­тель­ность букв, не обя­за­тель­но осмыс­лен­ная. Сколь­ко су­ще­ству­ет таких слов, ко­то­рые может на­пи­сать Вася?

 

Решение:

Пусть С стоит в слове на пер­вом месте. Тогда на каж­дое из остав­ших­ся 4 мест можно по­ста­вить не­за­ви­си­мо одну из 3 букв. То есть всего 3*3*3*3 = 81 ва­ри­ант. Таким об­ра­зом, С можно по оче­ре­ди по­ста­вить на все 5 мест, в каж­дом слу­чае по­лу­чая 81 ва­ри­ант. Итого по­лу­ча­ет­ся 81 * 5 = 405 слов.

Ответ: 405

 

Количество информации при двоичном (компьютерном) кодировании

 

Пример 4.

Объем сообщения – 7,5 Кбайт. Известно, что данное сообщение содержит 7680 символов. Какова мощность алфавита?

Решение:

Объем сообщения I, написанного в исходном алфавите мощности M, содержащего N символов, равен: I = log2M * N

I = 7680 * log2M

Log2M = (7,5 * 213 бит) / 7680 =(7,5 * 213) /(15 * 29) = 8

M = 28 = 256

Ответ: 256

 

Количество информации при различных (не компьютерных) способах кодирования

Пример 5.

Аз­бу­ка Морзе поз­во­ля­ет ко­ди­ро­вать сим­во­лы для со­об­ще­ний по ра­дио­свя­зи, за­да­вая ком­би­на­цию точек и тире. Сколь­ко раз­лич­ных сим­во­лов (цифр, букв, зна­ков пунк­ту­а­ции и т. д.) можно за­ко­ди­ро­вать, ис­поль­зуя код аз­бу­ки Морзе дли­ной не менее четырёх и не более пяти сиг­на­лов (точек и тире)?

Решение:

Мы имеем ал­фа­вит из двух букв: точка и тире. Из двух букв можно со­ста­вить 24 четырёхбук­вен­ных слова и 25 пя­ти­бук­вен­ных слов.

Значит, всего можно закодировать 16 + 32 = 48 различных символов.

Ответ: 48

 

Пример 6.

Све­то­вое табло со­сто­ит из лам­по­чек. Каж­дая лам­поч­ка может на­хо­дить­ся в одном из трех со­сто­я­ний («вклю­че­но», «вы­клю­че­но» или «ми­га­ет»). Какое наи­мень­шее ко­ли­че­ство лам­по­чек долж­но на­хо­дить­ся на табло, чтобы с его по­мо­щью можно было пе­ре­дать 18 раз­лич­ных сиг­на­лов?

Решение:

Мощность алфавита M =3 («вклю­че­но», «вы­клю­че­но» или «ми­га­ет»).

Количество различных сигналов 18 <= MN= 3N. (Поскольку равенство не выполняется, N берем с избытком, иначе не сможем закодировать все сигналы). N = 3.

Ответ: 3

Интенсивная подготовка

Бесплатные пробные ЕГЭ

Расписание курсов

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ЛЕТНИЕ КУРСЫ ЕГЭ И ОГЭ

Типы подготовки:
Сказать спасибо
РЕКОМЕНДУЕМ:
ege-tv

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Смотреть

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Позвоните мне

Все поля обязательны для заполнения

Отправить

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов  для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса - от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения.  Автор видеокурса Премиум - репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги - 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» - всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.